3.578 \(\int \frac {A+B \sec (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))} \, dx\)

Optimal. Leaf size=86 \[ \frac {2 (A b-a B) \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{b d (a+b)}-\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}+\frac {2 B \sin (c+d x)}{b d \sqrt {\cos (c+d x)}} \]

[Out]

-2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b/d+2*(A*b-B*a)*(co
s(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*a/(a+b),2^(1/2))/b/(a+b)/d+2*B*si
n(d*x+c)/b/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.39, antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {2954, 3000, 3059, 2639, 12, 2805} \[ \frac {2 (A b-a B) \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{b d (a+b)}-\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}+\frac {2 B \sin (c+d x)}{b d \sqrt {\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x])/(Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])),x]

[Out]

(-2*B*EllipticE[(c + d*x)/2, 2])/(b*d) + (2*(A*b - a*B)*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(b*(a + b)*
d) + (2*B*Sin[c + d*x])/(b*d*Sqrt[Cos[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2954

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(
d + c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 3000

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((A*b^2 - a*b*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*
Sin[e + f*x])^(1 + n))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*(m
 + n + 2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B)*(m + n + 3)*Sin[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^
2, 0] && RationalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n,
-1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))} \, dx &=\int \frac {B+A \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (b+a \cos (c+d x))} \, dx\\ &=\frac {2 B \sin (c+d x)}{b d \sqrt {\cos (c+d x)}}+\frac {2 \int \frac {\frac {1}{2} (A b-a B)-\frac {1}{2} b B \cos (c+d x)-\frac {1}{2} a B \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{b}\\ &=\frac {2 B \sin (c+d x)}{b d \sqrt {\cos (c+d x)}}-\frac {2 \int -\frac {a (A b-a B)}{2 \sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{a b}-\frac {B \int \sqrt {\cos (c+d x)} \, dx}{b}\\ &=-\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}+\frac {2 B \sin (c+d x)}{b d \sqrt {\cos (c+d x)}}+\frac {(A b-a B) \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{b}\\ &=-\frac {2 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}+\frac {2 (A b-a B) \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{b (a+b) d}+\frac {2 B \sin (c+d x)}{b d \sqrt {\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 2.80, size = 206, normalized size = 2.40 \[ \frac {-\frac {2 B \sin (c+d x) \left (\left (a^2-2 b^2\right ) \Pi \left (-\frac {a}{b};\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 b (a+b) F\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )-2 a b E\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )\right )}{a b \sqrt {\sin ^2(c+d x)}}+\frac {2 (2 A b-3 a B) \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a+b}-\frac {2 b B \left (2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )-\frac {2 b \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a+b}\right )}{a}+\frac {4 B \sin (c+d x)}{\sqrt {\cos (c+d x)}}}{2 b d} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Sec[c + d*x])/(Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])),x]

[Out]

((2*(2*A*b - 3*a*B)*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a + b) - (2*b*B*(2*EllipticF[(c + d*x)/2, 2] -
 (2*b*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a + b)))/a + (4*B*Sin[c + d*x])/Sqrt[Cos[c + d*x]] - (2*B*(-
2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*b*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (a^2
 - 2*b^2)*EllipticPi[-(a/b), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*b*Sqrt[Sin[c + d*x]^2]))/(2*b*d
)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B \sec \left (d x + c\right ) + A}{{\left (b \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)/((b*sec(d*x + c) + a)*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

maple [B]  time = 8.68, size = 325, normalized size = 3.78 \[ -\frac {\sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-\frac {2 \left (A b -a B \right ) a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticPi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right )}{b \left (a^{2}-a b \right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}+\frac {2 B \left (-\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+2 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c)),x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*(A*b-B*a)/b/(a^2-a*b)*a*(sin(1/2*d*x+1/2*c)^2)^
(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/
2*d*x+1/2*c),2*a/(a-b),2^(1/2))+2*B/b*(-(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*
c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+2*(-2*sin(1/2*d*x+1/2*c)^4+
sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c
)^2-1))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B \sec \left (d x + c\right ) + A}{{\left (b \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)/((b*sec(d*x + c) + a)*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^{3/2}\,\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + b/cos(c + d*x))),x)

[Out]

int((A + B/cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + b/cos(c + d*x))), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {A + B \sec {\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right ) \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/cos(d*x+c)**(3/2)/(a+b*sec(d*x+c)),x)

[Out]

Integral((A + B*sec(c + d*x))/((a + b*sec(c + d*x))*cos(c + d*x)**(3/2)), x)

________________________________________________________________________________________